铈/铽掺杂高钆镥闪烁玻璃能量传递机理

杨斌王倩夏海平王金浩张约品

(宁波大学光电子功能材料实验室,浙江宁波 315211)

摘要 用高温熔融法制备了 Ce³⁺/Tb³⁺ 掺杂的高钆镥氟氧化物闪烁玻璃样品,测试分析了其密度、透射光谱、激发与 发射光谱、X 射线激发发射光谱及衰减曲线等。制备的闪烁玻璃具有高的闪烁光输出,密度大于 5.8 g/cm³,闪烁玻 璃中 Ce³⁺离子的引入有利于促进 Tb³⁺离子发光。用 Inokuti-Hirayama(I-H)理论模型分析了铈/铽掺杂高钆镥闪 烁玻璃的能量传递机理,分析结果表明 Ce³⁺→Tb³⁺的能量传递形式是无辐射共振能量传递。通过拟合数据和理 论公式计算出了两者之间能量传递的速率和效率,其能量传递速率 P_{SA}和 Tb³⁺离子浓度的平方成正比关系,而能 量传递效率 η 随 Tb³⁺离子浓度增加而升高。

关键词 材料;闪烁玻璃;光谱分析;I-H 理论模型;能量传递

中图分类号 TQ171.73 文献标识码 A doi: 10.3788/CJL201340.0506001

Energy Transfer Mechanisms of Ce^{3+}/Tb^{3+} Doped Scintillating Glasses with High $[Gd_{(1-x)}Lu_x]_2O_3$ Concentration

Yang Bin Wang Qian Xia Haiping Wang Jinhao Zhang Yuepin

(Laboratory of Photo-Electronic Material, Ningbo University, Ningbo, Zhejiang 315211, China)

Abstract The Ce^{3+}/Tb^{3+} doped oxyfluoride glasses with high $Gd[_{(1-x)}Lu_x]_2O_3$ concentration are prepared by high temperature melting method. The densities, transmission spectra, excitation spectra, emission spectra under ultraviolet (UV) and X-ray excitations and decay curves of Ce^{3+} ions are measured and analyzed. The scintillating glasses have excellent performance of high light output. The densities of the glasses are greater than 5.8 g/cm³. The Ce^{3+} ions can sensitize the luminescence of Tb^{3+} ions. The energy transfer mechanisms of the Ce^{3+}/Tb^{3+} doped scintillating glasses are analyzed by the I-H theory model. The energy transfer rate and energy transfer efficiency between Ce^{3+} and Tb^{3+} ions are calculated by the fitting data and theoretical formula. The results indicate that the energy transfer mechanism is non-radiative energy transfer, the energy transfer rate is proportional to the square of the Tb^{3+} ions concentration, and energy transfer efficiency increases with the concentration of Tb^{3+} ions. **Key words** materials; scintillating glass; spectral analysis; I-H theory model; energy transfer OCIS codes 160.4670; 160.2750; 340.7440

1 引

言

闪烁体材料是一种在高能粒子或射线(如 X 射 线、γ 射线或原子核粒子等)的激发下能够发出可见 光的光功能材料,在核物理、地球物理、核医学和工 业探测等领域有广泛的应用^[1,2]。X 射线 CCD 成像 系统是近年来发展起来的一种新型的高效 X 射线 成像系统。这种系统工作效率高、结构简单且灵敏 度高,具有重要的使用价值和良好的应用前景。

X 射线转换屏的作用是将 X 射线转换成可以 被胶片或 CCD 元件接收的可见光,是所有 X 射线

收稿日期: 2012-12-26; 收到修改稿日期: 2013-01-08

基金项目:国家自然科学基金(61275180,50972061,51272109)、浙江省自然科学基金(Z4110072,R4100364)、宁波大学优 秀学位论文培育基金(PY20120020)、核探测与核电子学国家重点实验室(中国科学院高能物理研究所、中国科学技术大学)、 浙江省重中之重学科开放基金(20110934,20121139)和宁波大学王宽诚幸福基金资助课题。

作者简介:杨 斌(1988—),男,硕士研究生,主要从事闪烁玻璃方面的研究。E-mail: yangbin3007@126.com

导师简介:张约品(1968—),男,博士,研究员,主要从事光电子功能材料方面的研究。E-mail: zhangyuepin@nbu. edu. cn (通信联系人)

成像系统的关键组成部分,目前主要选用由多晶荧 光粉(如 BaFCl:Eu,Gd₂O₂S:Tb等)制成的多晶 屏。在医疗放射学和通常结构分析方面,X射线剂 量和光子能都较小,多晶屏还可以满足使用要求,但 在工业探伤、航空工业和高清晰度数字辐射成像方 面,必须采用高能X射线源,如果以多晶屏作转换 元件,其分辨率就达不到要求。由于玻璃本身是透 明的、均质的,解决了光散射问题,玻璃不受尺寸限 制,可以做得很厚,吸收较多的X射线,转换效率较 高,因此透明发光玻璃成为代替多晶屏制作高能X 射线转换屏的最好材料之一。玻璃还具有成本低, 体积与成分容易调整等优点。Tb³⁺离子掺杂闪烁 玻璃最强发光位于543 nm 左右,可以很好地与光 电耦合器匹配,可广泛用于医学和工业X射线图像 显示领域^[3,4]。

已有研究表明在含 Gd₂O₃ 氧化物玻璃基质中掺 Tb³⁺离子时,玻璃中 Gd₂O₃ 的引入可提高玻璃的密 度,同时 Gd³⁺ 又对掺 Tb³⁺闪烁体的发光具有一定促 进作用,但当 Gd₂O₃ 含量高于一定浓度时 Gd³⁺会产 生浓度猝灭,降低了发光强度^[5]。学者对 Ce³⁺ 和 Tb³⁺离子的掺杂闪烁玻璃已有一定的研究^[6~9],但 Ce³⁺和Tb³⁺共掺高钆镥氟氧化物玻璃的研究较少, 对于Ce³⁺→Tb³⁺能量传递机理的还待深入研究。

本文以 SiO₂-B₂O₃-BaF₂-Lu₂O₃-Gd₂O₃ 系统玻 璃为基质,掺杂 Ce³⁺和 Tb³⁺离子。可以调节玻璃 中 Lu₂O₃和 Gd₂O₃的含量,在提高闪烁玻璃密度的 同时,具有高的闪烁光输出,制备的 Ce³⁺和 Tb³⁺共 掺的钆镥氟氧化物玻璃具有高密度和高光输出的优 点。测试了玻璃的密度、透射光谱、激发光谱、发射 光谱及衰减曲线等,研究了 Ce³⁺和 Tb³⁺共掺高钆 镥氟氧化物玻璃的光谱和闪烁性能,运用 Inokuti-Hirayama(I-H)理论模型对 Ce³⁺→Tb³⁺的能量传 递机理及部分能量传递参数进行了研究。

2 实 验

实验中以 SiO₂-B₂O₃-BaF₂-Lu₂O₃-Gd₂O₃ 作为基 质系统,掺杂 Ce³⁺和 Tb³⁺。B₂O₃ 以 H₃BO₃ 引入, Ce³⁺由 CeF₃ 引入,Tb³⁺由 Tb₄O₇ 引入,其他原料均 以氧化物形式引入。玻璃样品的配比列于表 1 中。

表1 玻璃样品的物质的量比组成和密度

Table 1 M	olar composition	ns and densiti	ies of glass	s samples
-----------	------------------	----------------	--------------	-----------

Sample	Molar compositions / %	Density /(g/cm ³)	
CT00	$35 SiO_2 - 15B_2O_3 - 15BaF_2 - 25Lu_2O_3 - 10Gd_2O_3$	5.643	
CT02	$33 SiO_2 - 15B_2O_3 - 15BaF_2 - 25Lu_2O_3 - 10Gd_2O_3 - 2Tb_2O_3$	5.781	
CT04	$31 SiO_2 15B_2O_3 15BaF_2 25Lu_2O_3 10Gd_2O_3 4Tb_2O_3$	5.953	
CT10	$34 {\rm SiO_2}\hbox{-}15 {\rm B_2} {\rm O_3}\hbox{-}15 {\rm Ba} {\rm F_2}\hbox{-}25 {\rm Lu}_2 {\rm O_3}\hbox{-}10 {\rm Gd}_2 {\rm O_3}\hbox{-}{\rm Ce}_2 {\rm O_3}$	5.715	
CT12	$32 {\rm SiO_2}\hbox{-}15 {\rm B_2O_3}\hbox{-}15 {\rm BaF_2}\hbox{-}25 {\rm Lu}_2 {\rm O}_3\hbox{-}10 {\rm Gd}_2 {\rm O}_3\hbox{-}{\rm Ce}_2 {\rm O}_3\hbox{-}2 {\rm Tb}_2 {\rm O}_3$	5.876	
CT14	$30 SiO_2 - 15B_2O_3 - 15BaF_2 - 25Lu_2O_3 - 10Gd_2O_3 - Ce_2O_3 - 4Tb_2O_3$	6.042	
CT16	$28 SiO_2 15B_2O_3 15BaF_2 25Lu_2O_3 10Gd_2O_3 Ce_2O_3 6Tb_2O_3$	6.197	
CT18	$26 SiO_2$ - $15B_2O_3$ - $15BaF_2$ - $25Lu_2O_3$ - $10Gd_2O_3$ - Ce_2O_3 - $8Tb_2O_3$	6.351	

以每个样品总重 20 g 计算出各种原料试剂在 实验样品中所占的质量,然后用天平分别称量后,放 入玛瑙研钵体仔细研磨,充分混合后放入刚玉坩埚 中。将刚玉坩埚放入已升温到 1380 ℃的硅碳棒电 炉中,其中掺 Ce³⁺的样品保证炉内为还原气氛,保 温 60 min 后倒入预热过的铸铁模中,在 500 ℃退火 2 h,之后让其随炉自然冷却至室温,取出样品。将 样品加工成 10 mm×10 mm×4 mm 大小,两面抛 光处理,用于密度、紫外-可见透过射光谱、紫外激发 光谱、荧光光谱及闪烁性能的测量。

所有性能测试都在常温下进行。密度用阿基米 德悬浮法测定;紫外-可见透射光谱的测试用 Perkin-Elmer Lamda35 光谱仪;发射光谱、激发光谱使用日 本 Hitachi F-4500 型荧光分光光度计测试;X 射线激 发发射谱测试条件为:X 管高压为 60 kV,光电倍增管 (PMT)电压为 800 V,管电流为 3 mA。

3 结果与讨论

3.1 样品的密度

表1列出了样品的密度。Ce³⁺和Tb³⁺共掺的 4组玻璃样品密度大于5.8g/cm³,闪烁体密度的提 高对降低闪烁体的辐射长度、增加X射线的吸收截 面、提高图像显示时的信噪比具有显著的效果^[10]。

3.2 透射光谱

图 1 为样品 CT00、CT02、CT10 和 CT12 的透 射光谱。从图 1 中可以看出样品 CT00 和 CT02 的 截止波长相同,在 315 nm 左右;CT10 和 CT12 的截 止波长发生了明显红移,位于 350 nm 左右。这是 由于 Ce^{3+} 离子 4f-5d 的宽吸收带引起的。对比 CT00 和 CT02 的透射曲线,CT02 有几个较为明显 的吸收峰,分别位于 350,368,378,485 nm,这是由 于 Tb^{3+} 离子从基态(${}^{7}F_{6}$)分别跃迁至 ${}^{5}L_{9},{}^{5}L_{10},{}^{5}G_{6}$ 和 ${}^{5}D_{4}$ 而引起的吸收^[11]。样品 CT12 的透射光谱中 前两个吸收峰(350,368 nm)在图中都没有观察到, 这是由于这些吸收峰被 Ce^{3+} 离子 4f-5d 的宽吸收带 掩盖了。

图 1 CT00、CT02、CT10 和 CT12 的透射光谱 Fig. 1 Transmission spectra of CT00, CT02, CT10 and CT12

3.3 激发光谱

图 2 为样品 CT02、CT10 和 CT14 的激发光 谱。从图 2 中可以看出单掺 Tb³⁺离子样品(CT02) 峰值位置在 240,253,276,306,313,318,341,353, 370,378,486 nm; Ce³⁺ 单掺样品(CT10)的峰值位 于 240,253,276,313,339 nm; Ce³⁺和 Tb³⁺离子共 掺样品(CT14)的峰值分别位于 240,253,276,306, 313,318,339,341,353,370,378,486 nm。分析得 到其中 240 nm 和 253 nm 是由基质的电荷迁移带 引起的,276 nm 和 313 nm 是由 Gd³⁺离子的⁸S_{7/2} → ${}^{6}I_{7/2}$ (276 nm)和 ${}^{8}S_{7/2} \rightarrow {}^{6}P_{7/2}$ (313 nm)能级跃迁引起的 激发峰^[12]。339 nm 是由于 Ce³⁺离子的 4f-5d 的能级跃

图 2 CT02、CT10 和 CT14 的激发光谱 Fig. 2 Excitation spectra of CT02, CT10 and CT14

3.4 发射光谱

图 3 为样品 CT12、CT14、CT16 和 CT18 的发 射光谱,激发光波长为339 nm。图3中4个样品中 的 Ce³⁺ 离子浓度保持不变, 而 Tb³⁺ 离子的浓度在 增加,可以观察到主要的峰值位于 370~420 nm, 489 nm,543 nm,584 nm 和 620 nm 处。其中 370~ 420 nm 处主要是由于 Ce³⁺ 离子的发光引起的宽发 射带,其峰值点随着 Tb³⁺离子浓度的升高而产生红 移,这是由于随着 Tb₂O₃ 浓度的增加,氧原子增多, 使得 Ce³⁺离子的 5d 能级受氧原子的影响而降低, 而 4f 轨道受到 5s、5p、5d 和 6s 电子的屏蔽作用基 本保持不变,使得 5d-4f 能级间距变小,引起发光红 移^[13]。且其峰值强度随着 Tb³⁺离子浓度的升高而 降低,489,543,584,620 nm 是由于 Tb³⁺ 离子从⁵D₄ 能级分别跃迁到 $^{7}F_{I}(J=6,5,4,3)$ 引起的,且其强 度随着 Tb³⁺离子浓度的升高而升高。以上结果表 明 Ce³⁺离子有效地将能量传递给 Tb³⁺离子使得 Tb³⁺离子发射特征发光峰。

图 3 CT12、CT14、CT16 和 CT18 的发射光谱

Fig. 3 Emission spectra of CT12, CT14, CT16 and CT18

之前有报道 Tb³⁺离子在 380,415,437 nm 处有 发光峰值,分别是由⁵D₃ 能级跃迁到⁶F_J(J=6,5,4) 引起的^[14]。但在图 3 中并没有在这些位置观察到 明显的峰值,这是由于 Tb³⁺离子在这些波长的发光 峰被 Ce³⁺离子的宽发射带掩盖了。

图 4 是样品 CT12、CT14、CT16、CT18 和 BGO

晶体的 X 射线激发发射谱。从图 4 中可以看出玻 璃样品的 X 射线激发发射光谱和紫外激发下的发 射光谱相似,其主要的发光强度变化规律也与荧光 光谱相同。图 4 中的内插图为 350~450 nm 的放大 图,从内插图中可以看出 360 nm 和 386 nm 是由 Ce³⁺离子的 5d-4f 跃迁引起的;而 378、414、435 nm 分别是由 Tb³⁺离子的⁵D。能级跃迁到⁶F_J(J=6,5, 4)引起的,这与之前 339 nm 激发的荧光发射谱相 一致。从图中可以看到样品 CT12、CT14、CT16、 CT18 在 543 nm 处的峰值强度比 BGO 晶体的峰值 强度强;通过对图 4 中每条曲线的积分,可以得到样 品 CT12 的积分强度为 1664,样品 CT14 为 2139, 样品 CT16 为 3567,样品 CT18 为 3795,BGO 晶体 积分强度为 10612,可以计算出积分强度最高的样 品 CT18 的积分强度为 BGO 晶体的 36%。

图 4 CT12、CT14、CT16、CT18 和 BGO 的 X 射线 激发发射谱

Fig. 4 Emission spectra under X-ray excitation of CT12, CT14, CT16, CT18 and BGO

3.5 能量传递机理

图 5 是样品 CT10、CT12、CT14、CT16 和 CT18 在 339 nm 激发下 386 nm 处发光的衰减时间测试曲 线及相应拟合的曲线图,图中震荡曲线为测试曲线, 每条震荡曲线上的粗实线为其理论拟合曲线。从图 中可以看到,随着 Tb³⁺离子浓度的升高,Ce³⁺离子的 荧光寿命变短。由 Dexter 定理可知 Ce³⁺ 和 Tb³⁺离 子之间的能量传递存在着无辐射能量传递^[15]。

Т

图 5 CT10、CT12、CT14、CT16 和 CT18 的衰减时间 曲线及相应拟合曲线图

Fig. 5 Decay and fitting curves of Ce³⁺ ions of CT10, CT12, CT14, CT16 and CT18

根据 I-H 理论模型,在忽略 Tb³⁺离子自身之间 的相互作用以及能量反传递的情况后,得到 Ce³⁺离 子的荧光衰减强度与时间的关系^[15]

$$I(t) = I(0) \exp\left[-\frac{t}{\tau_s} - \Gamma\left(1 - \frac{3}{S}\right) \frac{C}{C_0} \left(\frac{t}{\tau_s}\right)^{3/S}\right],\tag{1}$$

其中 τ_s 为没有掺杂 Tb³⁺离子时,Ce³⁺离子的本征 寿命, $\Gamma\left(1-\frac{3}{S}\right)$ 为伽马函数,C为 Tb³⁺离子的浓 度,C。为临界传递浓度,S为静电多极子-多极子相 互作用的不同类型的指数,其中对电偶-偶极子、电 偶-四极子和电四极-四极子相互作用来说,S分别 为 6、8 和 10。

临界浓度 C₀ 与临界距离 R₀ 有如下关系^[16]:

$$R_0 = 7.346 C_0^{-1/3}.$$
 (2)

(1),(2)式中 C和 C_0 的单位是 mol/L, R_0 的单位是 Å(1Å=0.1 nm)。 R_0 是能量从 Ce^{3+} 离子传递到 Tb³⁺离子的速率,等于 Ce^{3+} 离子本征衰减速率下的 距离。

采用(1)式对图 5 中样品 CT12、CT14、CT16 和 CT18 的实验数据进行最佳拟合,以确定电多极子 相互作用的机理。图 5 中的粗实线为拟合的曲线, 拟合所得参数 C_0 、S、 τ 的值列于表 2 中,表中 $C_{Ce^{3+}}$ 和 $C_{Tb^{3+}}$ 分别表示 Ce³⁺ 和 Tb³⁺ 的离子数分数。

表 2	Ce ³⁺ 离	子荧光寿食	命和能量传递参数	
	1	C C 2+		~

able 2 Fluorescence lifetime of Ce ³⁺ and the parameters of	energy transfer
--	-----------------

Sample	$C_{\rm Ce^{3+}}$ / $^0\!\!/_0$	$C_{{ m Tb}^{3+}}$ / $\%$	C/(mol/L)	$C_0/(\mathrm{mol}/\mathrm{L})$	S	τ /ns	$R_{\scriptscriptstyle 0}$ / Å	η / $\%$	$P_{ m SA}/(10^7~{ m s}^{-1})$
CT10	1.0	0	0	—	—	40.8	—	_	_
CT12	1.0	2.0	0.581	4.496	5.974	27.1	4.451	33.58	1.239
CT14	1.0	4.0	1.160	4.471	5.946	23.5	4.459	42.40	1.804
CT16	1.0	6.0	1.773	4.520	5.967	19.2	4.443	52.94	2.757
CT18	1.0	8.0	2.303	4.480	5.945	15.9	4.456	61.03	3.838

从表 2 中可以看到 S 的值非常接近于 6,所以 Ce³⁺和 Tb³⁺离子之间的无辐射能量传递类型是电 偶-偶极子的相互作用。利用(2)式计算出不同 Tb³⁺离子浓度下的临界传递距离(R_0)也列在表 2 中。从计算的结果看 R_0 的值非常接近,维持在 4.45 Å附近。

能量传递速率 Psa的公式为[15]

$$P_{\rm SA} = \tau^{-1} - \tau_{\rm s}^{-1} \,, \tag{3}$$

式中 τ 为 Ce³⁺和 Tb³⁺离子共掺样品 Ce³⁺离子在 386 nm 处的荧光寿命, τ_s 为 Ce³⁺离子的本征寿命。 由(3)式计算得到的 P_{SA} 值列于表 2 中。

能量传递效率 η 的公式为[16]

$$\eta = 1 - \left(\frac{\tau}{\tau_s}\right),\tag{4}$$

式中的 $\tau \, \pi \, \tau_s$ 与(3)式中的含义相同。由(4)式计 算出的能量传递效率也列于表 2 中。样品 CT18 的 效率达到了 60%以上,可以看出 Ce³⁺和 Tb³⁺离子 无辐射共振能量传递效率随着 Tb³⁺离子的浓度升 高而升高。

由 Dexter 理论可以得到,对于电偶-偶极子相 互作用类型,能量传递速率 P_{SA} 与离子间距离的六 次方 R⁶ 成反比,而离子间距离 R³ 与离子浓度 C 成 反比,所以可以得到 P_{SA} 和 C² 成正比^[15]。图 6 为传 递速率 P_{SA} 和浓度平方 C² 的关系图,P_{SA} 与 C² 呈线 性关系,这一点进一步证实了 Ce³⁺ 和 Tb³⁺离子间 的能量传递机理是电偶-偶极子相互作用的无辐射 共振能量传递。

从图 6 中可以看出,衰减曲线的开始部分为非 指数的,这种特性反映了无辐射能量传递的特征。 随着 Tb³⁺离子浓度的增加,Ce³⁺和 Tb³⁺离子的距 离变小,传递的速率增加,这种现象越明显,能量传 递效率越高。

4 结 论

研制的 Ce³⁺/Tb³⁺掺杂的高钆镥氟氧化物闪烁 玻璃具有高的闪烁光输出,其密度也较高,大于 5.8 g/cm³;在 Tb³⁺离子掺杂玻璃中引入 Ce³⁺离 子,由于 Ce³⁺→Tb³⁺的能量传递,使得 Tb³⁺的发光 强度增强。用 I-H 理论模型分析了 Ce³⁺→Tb³⁺能 量传递的机理,表明 Ce³⁺→Tb³⁺的能量传递是无辐 射共振能量传递,且是电偶-偶极子相互作用。能量 传递速率 P_{SA} 和 Tb³⁺离子浓度的平方成正比关系, 且能量传递效率 η 随 Tb³⁺离子浓度增加而升高。 计算出的能量传递效率可以达到 60%以上。

参考文献

- He Wei, Zhang Yuepin, Wang Jinhao *et al.*. Luminescence properties of terbium doped oxyfluoride tellurite glasses [J]. *Acta Physica Sinica*, 2011, **60**(4): 042901
 何 伟,张约品,王金浩等. Tb³⁺掺杂的氟氧碲酸盐玻璃发光 性能[J]. 物理学报, 2011, **60**(4): 042901
- 2 Yang Bin, Zhang Yuepin, Xu Bo *et al.*. Preparation and optical properties of Ce³⁺ doped high lutetium gadolinium oxide glasses [J]. Acta Optica Sinica, 2013, 33(2): 0216003
 杨 斌,张约品,徐 波等. 铈掺杂高钆镥氧化物玻璃制备和光 谱性能[J]. 光学学报, 2013, 33(2): 0216003
- 3 Zhao Hongsheng, Zhou Wancheng. Progress in research on scintillating glasses [J]. *Materials Review*, 2001, **15**(1): 26~27 赵宏生,周万成.闪烁玻璃的研究进展[J]. 材料导报, 2001, **15**(1): 26~29
- 4 Sun Xinyuan, Huang Shiming, Gu Mu *et al.*. Luminescence properties of silicate glass doped with Dy^{3+} and $Tb^{3+} [J]$. *J. Chinese Ceramic Society*, 2008, **36**(4): 526~530
- 孙心瑗, 黄世明, 顾 牡 等. Dy³⁺和 Tb³⁺掺杂硅酸盐玻璃的发 光性能[J]. 硅酸盐学报, 2008, **36**(4): 526~530
- 5 Wang Sheng, Qian Qi, Zhang Qinyuan et al.. Gd³⁺-sensitized Tb³⁺-doped scintillating silicate glass [J]. J. Inorganic Materials, 2009, 24(4): 773~777
 王 胜,钱 奇,张勤远等. Gd³⁺为敏化剂的掺 Tb³⁺ 硅酸盐闪

烁玻璃[J]. 无机材料学报,2009,24(4):773~777

- 6 Shen Siqing, Ma Qing, Xu Zhibin *et al.*. Fabrication, structure and luminescence properties of polycrystalline Tb³⁺-doped Lu₂SiO₅ films by Pechini sol-gel method [J]. *Appl. Surf. Sci.*, 2011, **258**(5): 1969~1974
- 7 Zuo Chenggang, Lu Anxian, Zhu Ligang. Luminescence of Ce³⁺/Tb³⁺ ion in lithium-barium-alumin-silicate oxyfluoride glasses [J]. Mater. Sci. Eng. B, 2010, 175(3): 229~232
- 8 Dongbing He, Chunlei Yu, Jimeng Cheng et al.. Effect of Tb³⁺ concentration and sensitization of Ce³⁺ on luminescence properties of terbium doped phosphate scintillating glass [J]. J. Alloys Comp., 2011, 509(5): 1906~1909
- 9 U. Caldiño, A. Speghini, E. Álvarez *et al.*. Spectroscopic characterization and optical waveguide fabrication in Ce³⁺, Tb³⁺ and Ce³⁺/Tb³⁺ doped zinc-sodium-aluminosilicate glasses [J]. *Opt. Mater.*, 2011, 33(4): 1892~1897
- 10 R. F. Reade. Terbium Activated Radioluminescent Silicate Glasses [P]. US Patent 3644172. 1972-04-04
- 11 Yang Bin, Zhang Yuepin, Xu Bo et al.. Efforts of Gd³⁺-Tb³⁺ energy transfer and luminescence properties of terbium-activated fluoride oxide tellurite glasses [J]. J. Optoelectronics and Advanced Materials, 2012, 14(9-10); 748~752

- 12 He Dongbing, Yu Chunlei, Cheng Jimeng et al.. Energy transfer between Gd³⁺ and Tb³⁺ in phosphate glass [J]. J. Rear Earths, 2011, 29(1): 48~51
- 13 Yang Bin, Zhang Yuepin, Xu Bo et al. Scintillating properties of Ce³⁺-doped high density oxide glasses [J]. Acta Physica Sinica, 2012, 61(19): 192901

杨 斌,张约品,徐 波等. Ce³⁺掺杂高密度氧化物玻璃的闪 烁性能研究[J]. 物理学报,2012,**61**(19):192901

14 Liu Xingren, Wang Zongkai, Wang Xiaojun. Transfer characteristics of non-radiative energy from $\rm Tb^{3+}$ to $\rm Ce^{3+}$ in

yttrium gallium garnets [J]. Acta Physica Sinica , 1989, $\mathbf{38}(3)$: $430{\sim}438$

刘行仁,王宗凯,王晓君. 钇镓石榴石中 Tb³⁺到 Ce³⁺的无辐射 能量传递特征[J]. 物理学报,1989,**38**(3):430~438

- 15 Xu Shaohong. Solid State Luminescence [M]. Beijing, Tsinghua University Press, 2011. 83~86 许少鸿. 固体发光 [M]. 北京:清华大学出版社, 2011. 83~86
- 16 M. Inokuti, F. Hirayama. Influence of energy transfer by the exchange mechanism on donor luminescence [J]. J. Chem. Phys., 1965, 43(6): 1978~1989

栏目编辑:韩 峰